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It is well known that the A1�TO� phonon with its eigenvector parallel to the unique c axis of the 4mm
symmetry is primarily responsible for the manifestation of displacive ferroelectricity in ABO3-type
perovskites. We have theoretically examined the softening behavior of this A1�TO� phonon, particularly paying
attention to its mode frequency around the Curie temperature �To�. Our unusual approach is that we examine
the microscopic Landau potential in terms of the displacement from the double-well minimum, rather than the
displacement from the symmetry point. Adopting PbTiO3 as an ideal underdamped phonon system to test our
formalisms, we have shown that the mode frequency of the “soft” A1�TO� phonon does not converge to zero
even at the phase transition temperature, Tc, and that the computed mode frequency accurately reproduces the
experimentally observed frequency over a wide range of temperature below Tc �763 K�.
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It is now well established that a displacive first-order
phase transition involving polar ions is driven by a softening
of relevant phonons.1–3 Phonon softening and associated lat-
tice dynamics in ABO3-type ferroelectric perovskites have
been investigated extensively1–15 and are still important sub-
jects in displacive phase transitions.14–20 The softening of
transverse optic �TO� phonons was predicted for the first
time by Fröhlich who combined the Lyddane-Sachs-Teller
�LST� relation with the Curie-Weiss law.21 According to this
prediction, the mode frequency of the TO phonon related to a
certain displacive transition becomes zero at the Curie tem-
perature �To� where the static dielectric permittivity diverges
to an infinite value. Followed by the Fröhlich’s suggestion,
several different theoretical models were proposed to ac-
count for the softening of the TO phonon near the Curie
temperature. These include: �i� a simple statistical mechani-
cal theory of Lines,3 which is based on the effective model
Hamiltonian, �ii� a simplified conceptual lattice dynamic
theory of Barker,22 and �iii� a lattice dynamical approach
based on a polarizable-anion core shell.23,24

The most comprehensive and quantitative theoretical
treatment of the phonon softening is based on the core-shell
model proposed by Cochran. According to the Cochran’s
theory,23 the frequency of the “soft” TO phonon converges to
zero ��o�TO�→0� at To if the short-range interaction force is
compensated by the long-range Coulomb force, leading to an
instability of the crystal lattice with respect to the soft TO
phonon. The compensation of these two distinct types of
forces occurs only if the electronic polarizability is suffi-
ciently high to enhance the dipolar force.23 However, such an
instability is not expected in alkali halides as, in these mate-
rials, the short-range force is always almost two times stron-
ger than the Coulomb interaction.

Now, our question is: in the case of a typical displacive
ferroelectric such as PbTiO3, is the cancellation perfect? In
other words, is the long-range Coulomb interaction strong
enough to compensate the short-range force? To obtain a clue
to this question, we have considered the microscopic Landau
potential, ��q�, for a first-order displacive ferroelectric phase
transition, namely,7,25

��q� =
1

2
�q2 +

1

4
�q4 +

1

6
�q6, �1�

where � is the dielectric stiffness �inverse static susceptibil-
ity� in q representations, and � and � are high-order dielectric
stiffness coefficients. ���T−To� /CE�0 below To, where
CE is the microscopic Curie constant,7 and ��0 and �	0
for a first-order displacive phase transition.25 Equation �1� is
schematically plotted in Fig. 1 at various temperatures. It can
be realized from Fig. 1 that because of a finite curvature at
the minimum of the double-well potential, the vibration fre-
quency, �o�T�, does not strictly converge to zero at To or
even at Tc.

In the case of ABO3-type ferroelectric perovskites such as
PbTiO3 �PTO� and BaTiO3 �BTO�, two distinct transverse
optic modes, A1�TO� and E�TO�, are known to exhibit pho-
non softening near the Curie temperature, To.5,6,10–13 Based
on rigid-ion lattice dynamic calculations,14,26 we have quali-
tatively sketched the eigenvectors of the lowest-frequency
A1�TO� and E�TO� modes in Fig. 2 �termed A1�1TO� and
E�1TO�, respectively�. Among these two ‘soft’ mode
phonons, the A1�1TO� phonon with its eigenvector parallel to
the unique c axis of the tetragonal 4mm symmetry is prima-
rily responsible for the manifestation of ferroelectricity be-
low the m3m-4mm paraelectric-ferroelectric transition point
�Tc�.11,13

In the present study, we will quantitatively examine the
softening behavior of this ferroelectric A1�1TO� phonon, par-
ticularly paying attention to its mode frequency in the vicin-
ity of To. We will show that the mode frequency of the
A1�1TO� phonon does not converge to zero at To �or even at
Tc� provided that the Landau expansion based on the sym-
metry argument remains valid for a ABO3-type perovskite.
In the present study, we adopt PTO as an ideal system to test
our theoretical formalisms because unlike BTO, it is known
to be the best example of displacive ferroelectrics without
exhibiting any overdamping �line broadening� of the
resonance-type soft phonon.4,5,7,13

Our approach in the present study is that we have recon-
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sidered the Landau potential in terms of the displacement
�q�� from the double-well minimum, rather than the displace-
ment from the paraelectric symmetry point, where q=0 �Fig.
1�. To quantitatively correlate the soft mode frequency with
the variation of temperature, we have first transformed ��q�
into ��q��. The q-value corresponding to the minimum of
the double-well �qe� can be obtained directly from Eq. �1�,
namely,

qe
2 =

��� + ��2 − 4��

2�
. �2�

Since q=qe+q�, it can be shown that using Eq. �2�, ��q� is
transformed to ��q�� in the following form:

��q�� = ��q� = 0� + aq� + bq�2 + cq�3 + dq�4 + ¯ , �3�

where the expansion coefficients, a, b, c, and d can be ex-
pressed in terms of the dielectric stiffness coefficients
�� ,� ,�� and qe as

a = − �qe�1/2� �2 − ���2 − 4�� + 2��

2�
	 � 0,

b =
1

2�

− 4�� + �2 − ���2 − 4��� 	 0,

c = −
1

3
�qe�1/2
− 2� + 5��2 − 4��� � 0,

d =
1

4

− 6� + 5��2 − 4��� 	 0 �4�

For simplicity, let us take thermal ensemble average for
�q��3. ��q�� now reads

��q�� = ��0� + a�q� + b�q�2 + ¯ , �5�

where a��a+c�q�2 and b��b+d�q�2, and the bracket de-
notes the ensemble average. Then, the Hamilton function can
be written as H�q��= �p2 /2m�+a�q�+b�q�2. Applying the
Hamilton equation of motion ��H /�q=−ṗ�, one obtains

d2q�

dt2 +
k

m
q� +

a�

m
= 0, �6�

where k=2b�. Then, the solution of Eq. �6� can be written as

q� = q0� sin �ot − �a�/2b�� , �7�

where m�o
2 is given by the following relation:

m�o
2 = k = 2b� = 2
b + d�q�2� . �8�

Therefore, a�q�-term in Eq. �5� does not contribute to the
modulation of the mode frequency. The vibrating dipole de-
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FIG. 1. Temperature dependence of the microscopic Landau po-
tential for a system undergoing a displacive ferroelectric phase tran-
sition. The Landau potential for the ferroelectric A1�TO� phonon is
schematically plotted at four different temperatures around the Cu-
rie point �To�, where the inverse dielectric susceptibility ��� be-
comes zero.

(a)

(b)

FIG. 2. A graphical representation of the eigenvectors of �a� the
nondegenerated A1�1TO� mode and �b� the doubly degenerated
E�1TO� mode of a ABO3-type perovskite �e.g., PbTiO3� having
tetragonal 4mm symmetry.
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scribed by Eq. �7� is apparently harmonic. However, the ef-
fective force constant k�=2b�� is now modulated by the an-
harmonicity term, d�q�2. Therefore, the present theoretical
approach summarized in Eqs. �7� and �8� can be regarded as
a quasiharmonic approximation.

Let us now estimate �q�2-term appeared in Eq. �8� in
terms of k and thermal energy. To do this, we have reconsid-
ered the Landau potential. ��q�� in the vicinity of qe can be
approximated by a harmonic potential, namely, ��q��
= �1 /2�kq�2=bq�2. According to the classical equipartition
law of energy, we establish the following equality:
�1 /2��E��o�= �1 /2�k�q�2. For a quantum harmonic oscilla-
tor, we further have: �E��o�= �
�o /2� · cot h�
�o /2kBT�.
Therefore, the following equality can be obtained from these
two relations,

�q�2 =

�o

2k
cot h� 
�o

2kBT
� �

kBT

k
=

kBT

2b�
�9�

where the right-hand-side expression comes from the high-
temperature approximation �
�o�kBT�. Substituting Eq. �9�
into Eq. �8� and solving the resulting equation with respect to
m�o

2 yields the following equation:

m�o
2 = b�1 +�1 +

2dkBT

b2 	 = 2b + �d

b
�kBT 	 0, �10�

where the last expression of Eq. �10� was obtained by apply-
ing the binomial expansion theorem to the second term. One
can eventually obtain the following expression of m�o

2 using
Eqs. �4� and �10�:27

m�o
2�T� =

2�2

�
− 6� −

2��2

�2 +
�

12����10 +
23�2

��2 − 3���	 . �11�

The first three terms of the right-hand side of Eq. �11� origi-
nate from the harmonicity �i.e., the 2b term� in ��q�� near
the double-well minimum where q�=0. On the other hand,
the last term comes from the d term, thus, from the anhar-
monicity term in ��q�� near q�=0 and always contributes to
the phonon hardening.

The mode frequency at the Curie temperature �To� can be
obtained in terms of To using the Curie-Weiss relation 
�
= �T−To� /CE�, namely,27

m�o
2�To� =

2�2

�
+

11�kBTo

4���
	 0 �12�

This relation tells us that the mode frequency does not go to
zero at To. One can further derive the following equation for
the inverse static dielectric susceptibility ��c� at the phase
transition temperature �Tc�:25

�c =
3�2

16�
=

1

CE
�Tc − To� 	 0, �13�

where Tc	To for a first-order displacive transition. Using
Eq. �13�, one can obtain the following expression of m�o

2 at
Tc after doing a tedious rearrangement procedure.27

m�o
2�Tc� =

103�2

128�
+

73�

14����3CEkB�2

16�
+ kBTo	 � m�o

2�To� .

�14�

Since both � and CE are positive, m�o
2�Tc� is also greater than

zero. Thus, the mode frequency of the ferroelectric A1�1TO�
phonon does not converge to zero even at Tc. The equilib-
rium off-center displacement �i.e., the position of the double-
well minimum� at Tc can further be derived in terms of high-
order dielectric stiffness coefficients, namely, 
qe�Tc��2

=3��� /4�.25

We are now in a position to examine temperature-
dependent �o of the lowest-frequency A1�1TO� phonon of
PTO. Computational details are given in the EPAPS
document.27 In Fig. 3, we compare the computed mode fre-
quency of the A1�1TO� phonon with the experimental values.
This shows that the present theoretical prediction �Eq. �11��
based on the symmetry argument of the Landau potential
accurately reproduces the mode frequency of the A1�1TO�
phonon over a wide range of temperature below Tc. The
experimental frequency values marked with circles denote
our estimated A1�1TO� frequencies indirectly obtained by
applying the Merten’s equation to the oblique phonon data
�45° inclined to the unique c axis of 4mm symmetry�. These
values agree well with the previously reported values ob-
tained by the same oblique phonon method.5 On the other
hand, the data points marked with filled squares denote our
directly measured values of the A1�1TO� mode frequency in
x�zz�x polarized backscattering geometry.12 As indicated in
Fig. 3, the mode frequency at Tc �763 K� does not converge
to zero but remain at �65 cm−1, supporting our theoretical
prediction presented in Eq. �14�.

Temperature (K)

ωω ωω
o
(T
)(
cm

-1
)

FIG. 3. �Color online� The computed mode frequency of the
A1�1TO� phonon plotted as a function of temperature �a solid line�.
The calculation was performed using Eq. �11� with optimized val-
ues of the Landau expansion coefficients: �=−2.57�1022 J /m4,
and �=+6.87�1042 J /m6 per unit cell. Following Hidaka �Ref. 7�,
we adopted To of 693 K in our calculations. Both the open circles
and the filled squares denote the mode frequency obtained from our
temperature-dependent Raman scattering data.
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Finally, we have considered a possibility of crossover be-
tween a displacive to an order-disorder transition near the
critical point. According to the Eyring’s transition-state
theory of rate process,28 the hopping frequency of relax-
ational dipoles across the barrier of the double-well potential
increases rapidly with temperature and can be described by
the following equation at high temperatures near Tc:

�hop =
kBT

h
exp�− �b

kBT
� , �15�

where �b is the height of a double-well �=��q=0−�q=qe
��

and can be expressed in terms of the Landau coefficients. For
examples, �b= ��3� /12�2 at T=To and �b= ��3� /96�2 at T
=Tc.

7 Thus, the barrier height decreases rapidly as tempera-
ture approaches Tc �Fig. 1�, which catastrophically enhances
the hopping rate across the double-well barrier �Eq. �15��. On
the other hand, the mode frequency of the soft phonon de-
creases with increasing temperature �Fig. 3�. Under suitable
conditions �e.g., ��� /��1 and high Tc�,7 thus, one would ex-
pect a crossover from the displacive soft mode phonon �a
vibrating dipole confined to one of the double wells� to the
relaxation-type dipole hopping �Debye-type order-disorder�.8
We have computed the hopping frequency at To and Tc using
Eq. �15�: �hop=6.24�1011 s−1=3.32 cm−1 at T=To �693
K�, and �hop=8.89�1012 s−1=47.2 cm−1 at T=Tc �763 K�.
Thus, the hopping frequency at the phase transition tempera-
ture �Tc� is comparable to the soft mode vibration frequency
even in PTO which unlike BTO, has long been regarded as a

typical displacive ferroelectric characterized by the
resonance-type soft phonon up to the critical point.

When these two mode frequencies are comparable to each
other near the critical point, a dynamic coupling between two
distinct modes is expected.29 In this case, one would observe
the “so-called” central peak in the dynamic structure factor,
S���, at �=0, in addition to the Stokes and anti-Stokes lines
at �o.8 This central peak was indeed observed in the
E-symmetry phonon �Raman� spectrum of a PTO single
crystal between To and Tc.

6 Since the central peak is known
to be a direct consequence of the mode-mode coupling, this
observation suggests an existence of the relaxation mode
even in PTO which has been known to have little tendency
of the order-disorder-type relaxation.7 Our estimate of the
hopping frequency also does not exclude a possibility of the
relaxational hopping near Tc.

In conclusion, our theoretical formalisms based on the
microscopic Landau potential in the vicinity of the double-
well minimum predict that the mode frequency of the
A1�1TO� phonon does not converge to zero even at the phase
transition temperature, Tc. The computed mode frequency of
the A1�1TO� phonon accurately reproduces the observed fre-
quency of PbTiO3 over a wide range of temperature below Tc
�763 K�.
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